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Motivation
• Electric → Hydraulic Conversion

– Push for electrification

• Mobile and Industrial Systems
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Prior Work

• Human Power Scale

• Electro-Hydraulic Actuation (EHA)
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Hogan, Paul. (2017). A Linear Electromagnetic Piston Pump. Retrieved from the University of Minnesota Digital 
Conservancy, http://hdl.handle.net/11299/190593.
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Proposed Concept

• Charge Pump in 
hydrostatic 
transmission (HST)

– Direct electric control 
good for lower 
pressure, high 
frequency application

– Variable displacement
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Modeling

• Piston Dynamics

– Forces acting:

• Magnetic Force 
(input force)

• Pressure

• Spring

• Viscous

– Leakage Flowrate
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Modeling

• Cylinder

– Pressure Dynamics

– Bulk Modulus

• Pressure Dependent



CCEFP Summit 7

Modeling

• Check Valve Dynamics

– Forces acting:

• Pressure

• Spring

• Damping

• Flowrate

– Orifice Equation
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Optimization

• Parameters being optimized:

• Objective function:

𝜂 =
𝐸𝑜𝑢𝑡
𝐸𝑖𝑛

=
Δ𝑃𝑄𝑜𝑢𝑡׬

𝐹׬ 𝑣

• Single Objective Genetic Algorithm

- Piston Diameter
- Piston/Cylinder Gap Height
- Check Valve Radius
- Check Valve Spring Constant
- Check Valve Cracking Pressure
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Results- f = 50 Hz

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 98.03%

Parameter Result

Piston 
Diameter

5.7 𝑚𝑚

Gap Height 15.7𝜇𝑚

Disc Radius 𝑖𝑛𝑙𝑒𝑡: 10 𝑚𝑚
𝑜𝑢𝑡𝑙𝑒𝑡: 6.4 𝑚𝑚

Spring 
Constant

𝑖𝑛𝑙𝑒𝑡: 53.9 Τ𝑁 𝑚
𝑜𝑢𝑡𝑙𝑒𝑡: 213.8 𝑁/𝑚

Cracking 
Pressure

𝑖𝑛𝑙𝑒𝑡: 1.00 𝑘𝑃𝑎
𝑜𝑢𝑡𝑙𝑒𝑡: 1.00 𝑘𝑃𝑎
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Linear Electric Machine Topology

• Selected topology –
tubular permanent 
magnet motor:

o Effective use of the volume

o Radial forces are cancelled
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Linear Electric Machine Topology

• FEA model of the motor is developed:

• Using solid iron core generates eddy current losses.

• Alternative: laminations or soft magnetic composite.
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Manufacturing Technique 1

1. Laminations – thin 
iron sheets:

• Iron sheets parallel 
to the magnetic 
field flow.
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Manufacturing Technique 2

2. Soft magnetic 
composite (SMC):

• Ferromagnetic powder 
particles coated with a 
uniform layer of electrical 
insulating film.

• Performance comparable 
to the iron laminations.

L. Pennander, A. Jack, Soft magnetic iron powder material AC 
properties and their application in electrical machines, Magn. Mater., 
Euro PM (2003)
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Electric Machine Optimization

Design specifications:

• Output power = 1.1 kW

• Output pressure = 2.7 MPa

Objectives:

• Maximize efficiency (η)

• Minimize total cost

• Minimize force ripple (FR)

Number of variables: 13

Stator:

Mover:
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Sample Optimal Design

f = 20 Hz             
stroke = 23.7 mm      
η = 89.9%

Force vs. mover position for different currents:

Square wave current:
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Electric Machine Optimization

Higher frequency:

• Higher efficiency.

• Lower machine materials 
cost.

bore-to-stroke ratio = 1 

Pareto fronts:
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Conclusion

• Candidate designs with efficiencies around 90% can 
be obtained.

• There is a trade-off between the efficiency of the 
motor and the pump when frequency increases.

• There are separate models developed for electrical 
and mechanical parts – getting ready to integrate 
these models.
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Future Works

• Select appropriate oscillation frequency.

• Develop combined electrical and mechanical 
model.

• Construct a physical prototype system.

• Experimentally validate the models.
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Thank you

Support for this project was 
provided by the CCEFP


